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序文
正弦波の基礎と線形定数係数の微分方程式の資料です．入力をもつシステムによって微分方程式
の意味を説明しています．解法については未定定数法による解き方を解説しています．ラプラス変
換による解き方は「制御工学のためのラプラス変換」にあります．
10 年ぐらい前の授業の資料です（今はその授業はありません）．授業の資料はもっとたくさん
あって，その一部を抜粋しています．
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第 1章

正弦波の角周波数と位相

1.1 工学における正弦波
1.1.1 正弦波の使用例
システム（例えば電気回路など）の特性を調べる方法の一つとして，システムに試験的な入力信
号を与えて，それにどう反応するかを見ることがある．試験的な入力としては，値が増えたり減っ
たりを繰り返す振動的な信号がよく用いられる（図 1.1）．その代表的なものが sin で表わされる正
弦波である．

図 1.1 システムの応答試験

1.1.2 三角関数の復習
高校の数学で学んだ sin θ の復習から始めよう．図 1.2 は sin θ の意味とそのグラフを表して
いる．

図 1.2 三角関数 sin θ

この図においては角度 θ が変数となっていることに注意しよう．
次の節で述べる正弦波は，この角度が時間とともに増える．そして，上図の左側の円で動径が回転することによって右側
の波が生じると考える．このように「円の動径の回転によって正弦波が生じる」という見方が今後の理解で重要となる．
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上図の左側の円における角度 θ の単位はラジアン [rad]とする．図 1.3のように，横軸方向を基
準の 0 [rad]として，反時計方向への回転を正の向きとする．

図 1.3 角度のとり方

１回転が 2π [rad]に相当する．

1.1.3 工学における正弦波
工学においてよく現れる正弦波の式は，例えば

f(t) = 3 sin
(
2t− π

4

)
(1.1)

のようなものである．f(t) は時間 t の経過とともに振動する信号を表す．この式における変数は
時間 t であることに注意しよう．この資料では時間の単位は秒で [sec]と書き表す．
ただし，変数 t は時間を表すが，sin の右にある 2t− π

4 は角度 [rad]を表していることに注意し
ておく．sin の右に書いてある量は必ず角度である．(1.1) 式においては，3 sin θ における角度 θ
が時間 t の関数となっており，

θ = 2t− π

4
(1.2)

によって時間とともに変わると考えてもよい．
(1.1)式には，「振幅」，「角周波数」，「位相」という量が含まれている（図 1.4）．

図 1.4 「振幅」，「角周波数」，「位相」

これらの量の意味をこれから解説していく．

1.1.4 振幅
sin θ であれ，sin

(
2t− π

4

) であれ，sin の値は最大で 1，最小で −1 である（図 1.5）．

図 1.5 振幅 1 の正弦波
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その 3 倍の大きさを持つ信号を表現したければ，単純に 3 を掛ければよい（図 1.6）．

図 1.6 振幅 3 の正弦波

sin の前にかかる係数は，正弦波がとり得る最大値と最小値を決めており，振動の振れ幅を表し
ている．したがってそれは「振幅」と呼ばれ，グラフでは上下方向の伸び縮みに関係する．

1.1.5 角周波数
sin θ における角度 θ を，時間 t とともに変化させることを考えよう．ここで「円における動径
の回転によって正弦波が生じる」という考え方を用いて，例えば θ = 2t と θ = 4t の２つの場合に
ついて比較してみる（図 1.7）．

図 1.7 2t と 4t の違い

この図からわかるように，sin 2t よりも sin 4t のほうがせわしなく振動する．sin 2t では 1 秒あ
たり 2[rad] の回転速度であるのに対して，sin 4t では 1 秒あたり 4[rad] の回転速度で速く回る．
同じ時刻で比較すると，sin 4t のほうがすでに 2 倍大きな角度に到達していることになる．
一般的には，sinωt において，ω の値が小さいほどゆったりと，ω の値が大きいほどせわしなく
振動する．
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図 1.8 sinωt の ω の違い

．
sin θ で θ = ωt とした sinωt においては，時間が 1秒経つごとに角度が ω ずつ増えていく．す
なわち，

角周波数 ω [rad/sec]は，円における動径が
1 [sec]間に ω[rad]回転するような
回転速度 [rad/sec]を表している． (1.3)

このことから ω は「角速度」とか「角周波数」と呼ばれている．単位は [rad/sec]になる．

図 1.9 角周波数 ω の回転

角周波数の低い（ω の値が小さい）信号は「低周波信号」，角周波数の高い（ω の値が大きい）
信号は「高周波信号」と呼ばれる．図 1.8のように時間軸を共通にとったグラフにおいては，ω の
値の違いは横方向の伸縮に現れる．
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1.1.6 周期

図 1.10 正弦波は周期関数

図 1.10のように，正弦波においては時間が経過すると，１つの基本となる波形が繰り返し周期
的に現れる．このような関数を周期関数という．
周期的に現れる波形 1 つのみに注目しよう（図 1.11）．この 1 つの振動時間を T 秒とする．そ
の時間は基本周期あるいは周期と呼ばれる．

図 1.11 正弦波の周期

（補足） 周期関数，周期，基本周期についてより詳しく述べておく．関数 f(t) がある定数 T に対して，
f(t+ T ) = f(t) (1.4)

を満たしているとき，f(t) は周期関数と呼ばれ，T を周期という．(1.4) 式の意味は，「T 秒経過すると，また同じ値に戻
る」と解釈できる．T が周期ならば 2T , 3T も周期になる．なぜなら，「T 秒経過するとまた同じ値に戻るならば，さらに
T 秒経過して合計 2T 秒経過してもまた同じ値になる」からである．このように考えると，T だけでなく 2T , 3T , · · · や
−T , −2T , −3T , · · · も「周期」となる．これらの周期のうち，正で最小のものを「基本周期」という．このように厳密に
は「周期」と「基本周期」は違う用語であるが，慣例的には「基本周期」のことを「周期」と呼んでいる．

1.1.7 角周波数と周期の関係
前節で「時間軸を共通したグラフにおいては，ω の値の違いは横方向の伸縮に現れる」と述べ
た．したがって，角周波数 ω の値は周期 T に関係する．直観的には図 1.12のように，ω が小さ
いほど周期 T は長く，ω が大きいほど周期 T は短くなると考えられる．
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図 1.12 角周波数と周期の関係

角周波数 ω [rad/sec] と周期 T [sec] の関係を式で表わしてみよう．その考えの基本となるのは，
図 1.13に見られるように，「円の動径の角度が 2π 回転すると，正弦波が T 秒間に 1 周期だけ進
む」ということである．この事実は

「T 秒間に動径は角度 2π 回転する」 (1.5)

と書くことができる．

図 1.13 1周期の間の回転

正弦波の角周波数を ω[rad/sec] とする．その場合，(1.3)で学んだように，正弦波を生み出す円
においては

「1 秒間に動径は角度 ω [rad]回転する」 (1.6)

ことになる．すると，
「T 秒間に動径は角度 ωT [rad]回転する」 (1.7)

といえる．上記の (1.5)と (1.7)より，つぎのことがいえる．� �
角周波数 ω [rad/sec] と周期 T [sec] の間には，

ωT = 2π (1.8)

が成り立つ．� �
1.1.8 周波数
「角周波数」ではなく「周波数」と呼ばれる量がある．これは「1 秒の間に 1 周期分の波形がい
くつ含まれているか」を表わす（図 1.14）．周波数は整数とは限らない．単位は [Hz]（ヘルツ）が
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用いられる．記号としては，f が用いられることが多い．

図 1.14 周波数の意味

例えば，周期 T が 0.5[sec]であれば，1 秒間に 2 回の周期が含まれるので，周波数 f は 2[Hz]
となる（図 1.15）．

図 1.15 周波数 2 Hzの信号

周期 T が 2 [sec]であれば，1 秒間に 0.5 周期が含まれるので，周波数 f は 0.5 [Hz]である．

1.1.9 周波数と周期の関係
これらの例からわかるように，正弦波の周期 T が決まれば，それに応じて周波数 f が決まる．
周期が短い信号ほど周波数は高く，周期が長い信号ほど周波数は低くなる．式で書くと，� �
周期 T [sec] の正弦波の周波数 f [Hz]は，

f =
1

T
(1.9)

で求められる．� �
1.1.10 周波数と角周波数の関係
ある正弦波があり，その角周波数が ω[rad/sec] であり，周波数が f [Hz] であるとする．両者の
関係を考察しよう．
角周波数が ω [rad/sec]なので，図 1.9の円を考えたとき，

1秒間に動径は角度 ω [rad]だけ回転する． (1.10)
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一方，周波数が f [Hz]であるので，1秒間に f 周期ある．1 周期で動径は 1回転すなわち 2π [rad]
回転するので（図 1.13参照），1 秒間に f 周期あれば，

1秒間に動径は角度 2πf [rad]だけ回転する． (1.11)

上記 (1.10)と (1.11)より，つぎのことがいえる．� �
信号の角周波数 ω[rad/sec]と周波数 f [Hz]との間には，

ω = 2πf (1.12)

の関係がある．� �
1.1.11 ω, T , f の関係
以上で得られた関係式を再度書いておく．ω, T , f の 3 つの量の間には，

ωT = 2π (1.13)

f =
1

T
(1.14)

ω = 2πf (1.15)

の関係がある（3つの式があるが，どれか 1 つは残り 2 つから導き出せる）．
ω, T , f の 3 つのうちどれか 1 つの値が決まれば，残りの 2 つの値は上の式から決まる．

1.1.12 位相
sinωt と sin

(
ωt− π

2

) の違いについて考えてみよう．グラフにすると図 1.16のような違いが見
られる．

図 1.16 sinωt と sin
(
ωt− π

2

)
このグラフは図 1.17から導き出される．



1.1 工学における正弦波 9

図 1.17 2 つの動径から出てくる 2 つの正弦波

図 1.17では，sin
(
ωt− π

2

) を生み出す動径が，sinωt の動径よりも π
2 だけ遅れている．角度の

符号は，反時計まわりに進む方向を正としている（図 1.3参照）ので，その逆方向に遅れている角
度は −π

2 と表わされる．
以上をまとめておこう．まず，sinωt を基準とする．これと比べて sin

(
ωt− π

2

) は，円での動径
の角度が −π

2 ずれている．この角度のずれは，横軸を時間にとったグラフでは右への平行移動を
生じさせる．この平行移動を生じさせた角度「−π

2」 のことを 「sin
(
ωt− π

2

) の位相」と呼ぶ．
一般に

sin(ωt+ ϕ) (1.16)

における ϕ の値は「位相」と呼ばれ，単位は [rad]である．これは sinωt と比較したときの動径の
角度のずれ（遅れ，あるいは進み）を表わす．位相が正弦波に及ぼす作用は，横軸時間のグラフを
横方向に平行移動させることである．sinωt よりも角度が遅れる場合，位相は負の値をとり，グラ
フでは右への平行移動が生じる．

1.1.13 位相の遅れ，位相差
２つの正弦波を比較して，「位相が遅れている」とか「位相差がある」という言い方をすること
がある．２つの正弦波の角周波数は同じ値であるとする．例えば，図 1.18の右側のグラフを見て，
「sinωt より sin

(
ωt− π

2

) は位相が π
2 遅れている」と言う．

図 1.18 位相の遅れ
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あるいは，図 1.19のように，「sinωt と sin
(
ωt− π

2

) の間には π
2 の位相差がある」とも言う．

図 1.19 位相の遅れ，位相差

このように，「位相」や「位相差」は 2 つの正弦波の時間的なずれを角度で表現していると解釈
できる．
（注意１）「位相」や「位相差」という言葉は，sin で表される正弦波に限らず，2 つの周期的な信
号の時間的なずれを表すのにも用いられることがある．
（注意２）「位相」の値には符号の正負があり，図 1.17のように遅れている角度（時計回りの角度）
を負の値とする．一方，「位相差」はこのプリントでは「位相の絶対値」を表わすことにする（他
の文献ではちがうかもしれない）．絶対値をとるので「位相差」は正の値をとる．このプリントで
は，位相を ϕ で，位相差を ϕℓ という記号で表わして区別する．式で表わすとつぎのようになる．

ϕℓ = |ϕ| (1.17)

1.1.14 位相差の値と時間的な遅れの関係
図 1.18の左側の円を見れば，2 つの「位相差が π

2 である」ことはすぐに分かるが，図 1.19の
グラフだけを見て，「位相差が π

2 である」と言い当てることができるだろうか．正弦波のグラフに
おいては，位相差という角度の値の影響が時間のずれとなって現れる．両者の関係を理解しておこ
う．まずは，代表的な位相差 ϕℓ とそれに対応するグラフを描くと図 1.20のようになる．

図 1.20 代表的な位相差

このグラフで特徴が顕著なのは，位相差 ϕℓ が π になると 2 つの正弦波は半周期ずれて正負で
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逆向きの信号となること，位相差 ϕℓ が 2π になると時間的なずれの量がちょうど 1 周期に一致す
ることである．このような関係は角周波数 ω がどんな値であっても成り立つ．
（注意）「位相」や「位相差」を考える場合，「2 つの正弦波の角周波数は同じである」ということ
は前提となっている．角周波数の値は何でもよいが，2 つの正弦波の角周波数が同じ値でなければ
位相差を考えることはできない．

1.1.15 時間のずれの量から位相差を求めるには
ここで図 1.21の問題について考えてみよう．

図 1.21 時間のずれから位相差を求める問題

2 つの正弦波（角周波数は同じ）が図 1.21のような場合，位相差 ϕℓ は何ラジアンか？図を見る
と時間のずれは 1 秒であるが，これを位相差という角度 [rad]に換算するといくつになるかという
問題である．
この問題を考えるヒントは図 1.20にある．図 1.20に見られるように，位相差と時間のずれの量
は比例関係にあり，「位相差 2π[rad] のとき 1 周期 T[sec]のずれ」が生じている．この比例関係は
図 1.22で表される．このプリントでは「位相差 ϕℓ」を「位相 ϕ の絶対値」と定義しているので，
位相差は正の値をとる．

図 1.22 位相差と時間のずれの関係

図 1.21の問題に対しては，図 1.23のように考えればよい．
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図 1.23 位相差を求める考え方

周期を T , 時間のずれを ℓ，求めたい位相差を ϕℓ[rad] とすると，図 1.23の比例関係から，
ϕℓ : ℓ = 2π : T (1.18)

の関係がある．図 1.21の場合，
ϕℓ : 1 = 2π : 6 (1.19)

となり，
ϕℓ =

π

3
(1.20)

と求められる．したがって，「図 1.21の f1(t) と f2(t) の位相差は π
3 [rad]」あるいは「f1(t) に比

べて f2(t) は位相が π
3 [rad] 遅れている」といえる．

図 1.24 一般の場合

図 1.24で表される一般の場合について考えよう．(1.18)式より，つぎのような関係が示される．� �
周期 T [sec]の 2 つの正弦波が ℓ [sec] ずれているとき，それらの位相差 ϕℓ[rad] は

ϕℓ =
2π

T
· ℓ [rad] (1.21)

と表される．� �
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(1.8)式より， 2π
T = ω と置き換えられるので，上で述べたことはつぎのようにも言える．� �

角周波数が ω [rad/sec]の 2 つの正弦波が ℓ [sec] ずれているとき，それらの位相差 ϕℓ[rad] は

ϕℓ = ωℓ [rad] (1.22)

と表される．� �
同じことだが，つぎのようにも書ける．� �
角周波数が ω [rad/sec]の 2 つの正弦波の位相差が ϕℓ のとき，横軸時間のグラフでは，

ℓ =
ϕℓ

ω
[sec] (1.23)

の時間のずれ [sec]が現れる．� �
（注意） ϕℓ は位相の差の絶対値を表わしているので正の値である．

1.1.16 角度で表わす理由
図 1.21を見て「f1(t) に比べて f2(t) は位相が π

3 [rad] 遅れている」と言うように，時間的なず
れを角度 [rad]で表現することに違和感があるかもしれない．しかし，周波数の高い信号や低い信
号を扱う場合には，ずれの様子を表すには時間よりも角度のほうが都合が良い．
例えば，時間を用いて「0.5秒ずれている」といっても，ゆったりと変化する低周波の二つの信
号が 0.5秒ずれるときと，細かく振動する周波数の高い信号が 0.5秒ずれるときでは，ずれの様相
が大きく異なるからである．正弦波のような山と谷が存在する周期的な二つの信号のずれる場合，
二つの信号のピークの相対的な位置関係が重要となるため，周波数の高低によらずにずれを表現す
るには角度を用いたほうが都合が良いのである．
例えば図 1.20では，ω の値はいくつであってもよい．このことから，位相の値が決まれば，２
つの正弦波の相対的なずれの様子を（周波数の高低にかかわらず）イメージすることができる．

1.1.17 ここまでのまとめ
正弦波と特徴づける「振幅」，「角周波数」，「位相」の３つの量についてまとめておく．これらの
値がグラフの形状にどう関係しているかを理解しておいてほしい．

図 1.25 正弦波の振幅，角周波数，位相
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第 2章

微分方程式

2.1 システムと微分方程式
2.1.1 システムの例
図 2.1は入力に反応して出力が変化するシステムを表わしている．

図 2.1 入力と出力があるシステム

この図は漠然としているが，このようなシステムは世の中に数多くある．例えば，電圧が変換さ
れる電気回路は図 2.2のように表わされる．

図 2.2 電気回路

もう少し複雑なシステムとしてモータがある．モータは電気回路と機械の組み合わせによって作
られるが，それを１つのシステムと見なす．さらにそれを入力電圧によって回転速度が変化するシ
ステムと見なすと，モータは図 2.3のように表わされる．

図 2.3 モータ

上のモータの例では，電圧と回転速度に注目して，それらを入力と出力とした．このように，注
目する 2 つの物理量があって，それらの間にどのような関係があるか，その特性を調べたいことが
よくある．
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上の例よりももっと複雑なシステムとして，人間の身体を考えてみよう．薬（降圧剤）によっ
て血圧が変化する特性を調べたいときは，人体を図 2.4 のようなシステムとして表現することに
なる．

図 2.4 人体

2.1.2 システムの数学的解析と微分方程式
システムがどのような特性をもっているかを詳細に解析したいとする．ここで重要となる特性
は，「時間 t とともに出力がどう変化するか」という特性である．そこで図 2.1を図 2.5のように
時間 t を用いた表現に置き換える．

図 2.5 入出力システム

時間 t とともに値がどう変化するかを考えたいので，入力と出力をそれぞれ時間の関数 u(t) と
y(t) で表わす．そして，システムには，入力と出力を関係づけている何らかの方程式が存在してい
ると考える．このように，関数や方程式を用いて，数学的にシステムを解析する方法は，工学のさ
まざまな分野で用いられている．
さて，上で「何らかの方程式」を述べたが，それはどのような形式で表わされるものになるだろ
うか．「時間とともに変化する」ということから，時間に関する変化率，すなわち「微分」が関係
することが予想されるだろう．実際，多くのシステムは時間 t に関する微分による導関数が含まれ
た方程式で表わされる．関数とその導関数が含まれる方程式は「微分方程式」と呼ばれる．

2.2 微分方程式の意味
2.2.1 微分方程式の一例
微分方程式にはいろいろな種類があるが，この授業では簡単で基礎的な微分方程式からスタート
する．例えば，

y′(t) + 4y(t) = 10 sin 2t (2.1)

のようなものである．y′(t) の意味は y(t) を時間 t で微分した導関数である．この資料での微分
は，時間 t に関する微分とする．
(2.1)式に条件を追加して，時刻 t = 0 のときの y の値が 3 であるとしよう．この y(0) = 3 と
いう条件は「初期条件」と呼ばれる．方程式と初期条件をまとめると，

y′(t) + 4y(t) = 10 sin 2t , y(0) = 3 (2.2)

と書かれる．



2.2 微分方程式の意味 17

ここで問題となるのは，「(2.2)式を満たす y(t) はどんな式で表わされるか」ということである．
その y(t) の式を求めることを「微分方程式を解く」という．

2.2.2 問題の意味
微分方程式の例題として，つぎのような問題があるとしよう．
問題：

y′(t) + 4y(t) = 10 sin 2t , y(0) = 3 (2.3)

を満たす y(t) を求めよ．
ここでは，この問題の意味を「システム」と関連付けて理解してみよう．まずは，図 2.6のよう
なシステムが存在するとする．

図 2.6 入出力システム

そして，この中の「u(t) と y(t) の方程式」が，つぎの微分方程式であるとする（図 2.7参照）．

y′(t) + 4y(t) = u(t) (2.4)

図 2.7 システムの微分方程式

つぎに，(2.4)式の意味を考えてみよう．それを解釈するには，式を少し変形して，

y′(t) = −4y(t) + u(t) (2.5)

と書いてみる．左辺の y′(t) は y(t) の変化率である．(2.5) 式は「y′(t) の変化率は，右辺のよう
に，その時刻 t における y(t) と入力 u(t) によって決まる」というシステムの特性を意味している
（図 2.8参照）．

図 2.8 微分方程式の意味

血圧と薬の関係に例えるなら，「血圧が下がる速度は，そのときの血圧の値と薬の量で決まる」ということになる．「外部
から投入される薬の量だけでなく，そのときの状態（血圧の値）も，変化の速度に影響する」というのは，物理的に納得で
きるであろう．
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ここで，出力 y(t) がどんな波形になるかという問題に考察を移していこう．それには先に述べ
たシステムの特性とともに，当然ながら，入力 u(t) がどんな波形であるかも影響する．その入力が

u(t) = 10 sin 2t (2.6)

という正弦波だとしよう（図 2.9）．

図 2.9 システムへの入力

さて，このとき出力 y(t) はどのような波形になるだろうか（図 2.10)．

図 2.10 システムの出力は？

y(t) として，ある１つの波形が定まるためには，初期値 y(0) が与えられなければならない（ス
タート地点を１つに決めなければ，進む道筋も定まらない）．例えば，y(0) = 3 のとき，y(t) はど
んな式になるかを知りたいとする（図 2.11）．

図 2.11 システムの出力を求める問題

以上，図 2.11で示したことが (2.3)式の問題の意味である．まとめると，「

y′(t) + 4y(t) = 10 sin 2t , y(0) = 3 (2.7)

を満たす y(t) を求めよ」という問題は，「あるシステムにおいて，
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• 入出力の関係を表わす微分方程式が
y′(t) + 4y(t) = u(t) で，

• 入力が u(t) = 10 sin 2t であり，
• 初期値が y(0) = 3

のとき，時刻 t の出力 y(t) はどのような式で表されるか？」を問うていると考えられる．

2.2.3 微分方程式の初期値問題とその解
微分方程式とともに初期値 y(0) の値が指定されている問題は，「微分方程式の初期値問題」と呼
ばれる．この問題はシステムの観点からは，つぎのような意味を持っている．

• 入力 u(t) と出力 y(t) の関係を表わす微分方程式
• 入力 u(t) の式
• 初期値 y(0) の値

から，時刻 t の出力 y(t) を表す式を求める（図 2.12）．

図 2.12 システムと微分方程式の解

微分方程式を解くことにより時刻 t の関数として y(t) を表す式が求められれば，さまざまな時
刻での出力の値を言い当てたり，未来の時刻の値を予測することもできる．血圧の例であれば，薬の投
与によって血圧がどんな値になるかを予測することができる．

2.3 線形定数係数 1階の微分方程式の解法
2.3.1 右辺が 0 の方程式の解き方
まずは１つ解いてみよう．� �
つぎの微分方程式を解け．

y′(t) + 4y(t) = 0 , y(0) = 3 (2.8)� �
（解答）
特性方程式は

λ+ 4 = 0 (2.9)

であり，これより λ = −4 が得られる．これを用いて，

y(t) = Ce−4t (2.10)

が解となる．ただし，C は定数である．初期条件 y(0) = 3 を (2.10)式にあてはめると，

y(0) = Ce−4·0 = 3 (2.11)
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となる．これより
C = 3 (2.12)

となる．これを (2.10)式に代入して，
y(t) = 3e−4t (2.13)

が解となる．
（解答終）

いきなり「特性方程式」という言葉が出てきたり，指数関数が唐突に現れて戸惑ったことと思う．
この解答の意味を以下で解説していく．
まず．指数関数が現れる理由を説明する．(2.8)式の微分方程式を一般化した

y′(t) + ay(t) = 0（a は与えられた定数） (2.14)

で考察を進めていく．上式を
y(t)′ = −ay(t) (2.15)

と書きなおして．これを満たす y(t) は何かを考えてみる．y(t) を微分する（左辺）と，その結果，
右辺のように再び y(t) が現れる関数はどんな関数だろうか．クイズのようであるが，微分しても
式の形があまり変わらない関数として思いつくのが指数関数である．
ただの指数関数 et では，微分しても全く変わらない．t で微分したとき定数倍になってほしい
ので，(2.14)式の解を

y(t) = eλt（λ は未知の定数） (2.16)

と仮定してみる．こうすれば，y′(t) = λeλt となる．この段階では λ は未知であるが，(2.14) 式
を満たすことを条件として考えると，λ の値はある１つの値に定まってくる．(2.16) 式を (2.14)
式に代入すると，

λeλt + aeλt = 0 (2.17)

となる．この両辺を eλt で割ると，
λ+ a = 0 (2.18)

が出てくる．これが (2.9)式の特性方程式である．これより，

λ = −a (2.19)

として λ の値が定まる．これを (2.16)式に代入した

y(t) = e−at (2.20)

は，(2.14)式を満たす（満たすための λ の条件式が (2.18)式の特性方程式であり，それを満たす
ように λ の値を −a に設定したのだから，満たすのは当然である）．さて，(2.14)式を満たす y(t)
は他にはないかを考えてみると，C を任意の定数として，

y(t) = Ce−at (2.21)

も (2.14)式を満たすこと確かめられる．実際，これを (2.14)式の左辺に代入すると，

y′(t) + ay(t) = −aCe−at + aCe−at = 0 (2.22)

となり，(2.14)式を満たしていることがわかる．
ここまでの考察をまとめておこう．
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微分方程式

y′(t) + ay(t) = 0 (2.23)

の一般解は
y(t) = Ce−at (2.24)

と表わされる．ただし，C は任意の定数である．� �
ここで注意してほしいのは，(2.8)式には初期条件 y(0) = 3 が指定されているのに，(2.23)式で
は初期条件を考慮していないことである．(2.23)式のように初期条件を考えない場合の微分方程式
の解は，(2.24)式のように任意の定数を含む．任意の定数にさまざまな値を代入すれば，さまざま
な解を表現できる一般的な表現となっていることから，(2.24)式のように任意の定数を含む解は一
般解と呼ばれる．
では，(2.8)式のように初期条件が与えられている場合はどうなるだろうか．初期条件を満たす
ような解を求めようとすると，任意だった定数は任意ではなくなり，ある値に固定される．さきほ
どの例題では，(2.11)式のように初期条件を満たそうとすることにより，定数 C の値が (2.12)式
のように C = 3 と決まった．初期条件と，解における定数は，この例題から理解できるであろう．
以上の考察をまとめておこう．� �
微分方程式

y′(t) + ay(t) = 0 , y(0) = b (2.25)

の解は
y(t) = be−at (2.26)

となる．� �
以上は数学的な議論であったが，これをシステムの観点から見つめ直してみよう．(2.25) 式で
は，右辺の入力 u(t) が 0 になっている．ということは，システムの観点からすれば，入力が 0 の
ときを考えていることになる．入力が 0 ならば出力も 0 になりそうだが，初期値 y(0) が 0 でな
ければ出力は 0 とは限らず，例題の場合では指数関数で表される．この状況は図 2.13のように表
される．

図 2.13 入力が 0 のときのシステムの出力

2.3.2 特性方程式について
上で現れた指数関数 be−at のグラフのカーブの具合は a の値によって決まってくる．外部から
の入力 u(t) が 0 のとき，出力のカーブにはシステム自身に内在している固有の特性が現れるの
で，a の値はシステム固有の特性を表していると考えられる．ところで，この a が登場する場面
は，(2.18)式の方程式の解として a が現れるところである．つまり，(2.18)式の方程式は，システ
ム固有の特性を表す値を解に持つ．このことから (2.18)式は「特性方程式」と呼ばれている．
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微分方程式 y′(t) + ay(t) = 0 の特性方程式は，y′(t) を λ に，y(t) を 1 に機械的に置き換える
ことにより，λ+ a = 0 として得られる．

2.3.3 微分方程式の種類
微分方程式の形式にはさまざまな種類がある．(2.23)式の微分方程式はそれらのうちの特別な形
式で，「１階定数係数線形斉次微分方程式」と呼ばれている．これはさまざまな微分方程式の中で
も，基礎的なもので，解を求めやすい．
「１階」の意味は１階の導関数 y′(t) と y(t) から構成されていること（ 2 階以上はない），「定数
係数」は y′(t), y(t) の係数が定数になっていること（t の関数ではない），「線形」は y′(t) と y(t)
に関して 1 次になっていること（例えば y2(t) や sin y(t) などはない），「斉次」は右辺が 0（ y(t)
とその導関数以外の項は 0 ）を意味している（図 2.14）．

図 2.14 １階定数係数線形斉次微分方程式

より詳細な意味については，もう少しいろいろな微分方程式が出てきてから解説したい．

2.3.4 右辺が 0 でない方程式
解き方
右辺が 0 でない（入力 u(t) が 零でない）微分方程式は非斉次方程式と呼ばれる．この解き方
は，つぎのようにまとめられる．� �

(1) 右辺を 0 に置き換えた斉次方程式の一般解 y0(t) を求める．
(2) 非斉次方程式の特殊解 yp(t) を求める．
(3) 非斉次方程式の一般解 y(t) = y0(t) + yp(t) を求める．
(4) 一般解 y(t) に初期条件をあてはめて，任意だった定数の具体的な値を求める．� �

このように (1) ∼ (4) の 4 段階を経て解が得られる．詳しい理論は後にして，まずは具体例を見
てみよう．� �

y′(t) + 4y(t) = 10 sin 2t , y(0) = 3 (2.27)

を満たす y(t) を求めよ．� �
（解答）
(1) まずは右辺が 0 の方程式（斉次方程式）

y′0(t) + 4y0(t) = 0 (2.28)

の一般解を求める．特性方程式は λ+ 4 = 0 なので，λ = −4 を用いて

y0(t) = Ce−4t (2.29)

が (2.28)式の一般解である．ただし，C は任意の定数である
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(2) つぎに非斉次方程式
y′p(t) + 4yp(t) = 10 sin 2t (2.30)

の特殊解 yp(t) を求める．右辺が 10 sin 2t であることから

yp(t) = d1 cos 2t+ d2 sin 2t (2.31)

と仮定する．ただし，d1, d2 は未定係数である（この値をつぎに求める）．(2.31)式を (2.30)式に
代入すると

(d1 cos 2t+ d2 sin 2t)
′

+4(d1 cos 2t+ d2 sin 2t) = 10 sin 2t (2.32)

となる．左辺の微分を計算すると

−2d1 sin 2t+ 2d2 cos 2t

+4(d1 cos 2t+ d2 sin 2t) = 10 sin 2t (2.33)

となり，さらに cos 2t と sin 2t でまとめると

(2d2 + 4d1) cos 2t+ (−2d1 + 4d2) sin 2t = 10 sin 2t (2.34)

となる．両辺の係数を比較すると {
2d2 + 4d1 = 0
−2d1 + 4d2 = 10

(2.35)

が得られる．この連立方程式を解いて，未定だった定数が

d1 = −1 , d2 = 2 (2.36)

と定まる．これを (2.31)式に代入して，

yp(t) = − cos 2t+ 2 sin 2t (2.37)

が特殊解となる．
(3) 非斉次方程式

y′(t) + 4y(t) = 10 sin 2t (2.38)

の一般解は，(2.29)式と (2.37)式を用いて

y(t) = y0(t) + yp(t) = Ce−4t − cos 2t+ 2 sin 2t (2.39)

と表わされる．
(4) 初期条件 y(0) = 3 を満たすような C を求める．(2.39)式で t = 0 とした値が 3 となること
から

C · 1− 1 + 2 · 0 = 3 (2.40)

となり，これより C = 4 が得られる．これを (2.39)式に代入して，

y(t) = 4e−4t − cos 2t+ 2 sin 2t (2.41)

が解になる．
（解答終）
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斉次方程式と非斉次方程式
上の解法にはいくつかのポイントがある．まず理解しておきたいのは斉次方程式の一般解と非斉
次方程式の特殊解である．
右辺が 0 の方程式で，初期条件を考えず任意定数を含んだ解は「斉次方程式の一般解」と呼ばれ
る．先に見た例では

y′0(t) + 4y0(t) = 0 (2.42)

を満たす解で，(2.29)式の
y0(t) = Ce−4t (2.43)

が斉次方程式の一般解となる．「一般解」と呼ばれる理由は任意定数 C を含んでいるからである．
解きたい問題は (2.27) 式のように右辺が 0 ではない．それなのにここで右辺が 0 の方程式を持ち出したのが不思議で
あろうが，実はこれが後の (2.47) 式あたりで活用される．
一方，右辺が 0 でない方程式で，初期条件を考えない解（のある１つ）は，「非斉次方程式の特
殊解」と呼ばれる．例えば

y′p(t) + 4yp(t) = 10 sin 2t (2.44)

に対する (2.37)式の
yp(t) = − cos 2t+ 2 sin 2t (2.45)

は「非斉次方程式の特殊解」である．「特殊解」と呼ばれる理由は任意定数を含んでいないからで
ある．
この特殊解は，元の問題である (2.27) 式の解にはなっていない．これは (2.44) 式を満たすが，t = 0 のときの値は

yp(0) = −1 であり，元の問題で提示されている初期条件 y(0) = 3 は満たしていない．
実は，(2.44)式を満たす解は (2.45)式以外にもたくさんあり，(2.45)式はそれらのうちのある１
つに過ぎない．そのことが「特殊解」と呼ばれる理由である．初期条件も含めた元の問題の解を求
めるには，まずは

y′(t) + 4y(t) = 10 sin 2t (2.46)

を満たすさまざまな解を知る必要がある．この方程式の一般解（任意定数を含んだ解）は，(2.43)
式と (2.45)式を組み合わせて，

y(t) = y0(t) + yp(t) (2.47)

と表わされる．これが (2.46)式を満たすことは代入すると確かめられる．実際に (2.46)式の左辺
に代入してみると，

y′(t) + 4y(t) = (y0(t) + yp(t))
′ + 4(y0(t) + yp(t))

= y′0(t) + 4y0(t) + y′p(t) + 4yp(t)

（ここで (2.42)式と (2.46)式を用いると） (2.48)

= 0 + 10 sin 2t (2.49)

となり，(2.46)式の右辺と一致する．
(2.47)式はつぎのように書くことができる．
「非斉次方程式の一般解」

＝「(1)で求めた斉次方程式の一般解」
＋「(2)で求めた非斉次方程式の特殊解」

これが 4 段階の解法のうち (3)に相当するところである．
最後に初期条件を満たすことを考えよう．(2.47)式のように非斉次方程式の一般解を表わしてお
くと，その中に任意の定数が含まれる．(4)の段階では，その定数を初期条件を満たすように求め
る．以上で元の問題の解が得られる．
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非斉次方程式の特殊解の求め方
4段階の解法の (2)のところ，非斉次方程式の特殊解の求め方について説明する．
(2.30)式で右辺（入力 u(t)）が 10 sin 2t であることから，(2.31)で解（出力 yp(t)）を cos 2t と

sin 2t で表わされると仮定した．その理由は図 2.15で表わされる．

図 2.15 出力の仮定

入力が正弦波のように振動するならば，出力にも同じような振動が生じるであろうと考える．
ここで，入力 10 sin 2t の 2 は「角周波数」であり，(2.31) 式の出力 yp(t) においても cos 2t と
sin 2t にその値は引き継がれている．ただし，それらの振幅は入力とは異なるだろうということで，
(2.31)式では未定係数 d1 と d2 を設定している．それらの定数は，(2.36)式のように，微分方程
式の解としてふさわしいように値を調整される．
このように，特殊解 yp(t) を入力 u(t) と同じような関数に仮定するとともに，一部分に未定係数
を含めておく，そして，方程式を満たすように未定係数を求めていく方法を「未定係数法」という．
例では入力 u(t)（微分方程式の右辺）が正弦波の場合を扱ったが，入力が定数や指数関数などの
場合には，それに応じて出力の波形も変わる．したがって，微分方程式の右辺 u(t) がどんな関数
になるかに応じて，特殊解の形を変えなければならない．その方法をつぎにまとめておく．� �

u(t) = k の場合，特殊解を

yp(t) = d（d は未定係数）

と仮定する．� �� �
u(t) = k cosωt あるいは u(t) = k sinωtの場合，特殊解を

yp(t) = d1 cosωt+ d2 sinωt（d1, d2 は未定係数） (2.50)

と仮定する．� �� �
u(t) = keγt の場合，特殊解を

yp(t) = deγt（d は未定係数） (2.51)

と仮定する．� �
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u(t) = keαt cosωt あるいは u(t) = keαt sinωtの場合，特殊解を

yp(t) = eαt(d1 cosωt+ d2 sinωt)（d1, d2 は未定係数） (2.52)

と仮定する．� �� �
u(t) = ktn の場合，特殊解を

yp(t) = dnt
n + dn−1t

n−1 + · · · d1t+ d0 (2.53)

（dn, · · · , d0 は未定係数）

と仮定する．� �
2.3.5 微分方程式の解とシステムの出力
微分方程式，

y′(t) + 4y(t) = 10 sin 2t , y(0) = 3 (2.54)

の解は，(2.41)式で見たように

y(t) = 4e−4t − cos 2t+ 2 sin 2t (2.55)

となる．この意味をシステムとの関連から解説すると図 2.16のようになる．

図 2.16 システムと微分方程式の解

解の第 1 項 4e−4t はシステムの特性が影響している項と考えられる．システムの特性方程式の
解 λ = −4 が含まれているからである．解の第 2 項と第 3 項 − cos 2t + 2 sin 2t は，入力が影響
している項である．正弦波であり，その角周波数が 2 であることは，それらの項と入力に共通した
性質だからである．
このように，システムの特性方程式と，入力がどんな関数かを見るだけでも，出力 y(t) の式は
おおよその予想がつく．

2.3.6 出力の時間的変化

y(t) = 4e−4t − cos 2t+ 2 sin 2t (2.56)

の第 1 項の指数関数 4e−4t は，時間 t の経過とともに 0 へ漸近（ぜんきん）する．「指数関数 eat

は，定数 a が負のとき，時間 t の経過とともに 0 に漸近する」という事実は知っておくべき重要
事項である（図 2.17）．
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図 2.17 eat のグラフ

したがって，ある程度時間が経過した後では，第 1 項の 4e−4t はほぼ零になっており，入力に
関連した項が出力 y(t) において支配的になる（図 2.18参照）．

図 2.18 システムの出力の波形

図 2.18のような現象が起きるのは，特性方程式の解が λ = −4 のように負の値をとるときであ
る．もし，逆に正の値をとったとすると，λ = 4 に対応して指数関数の部分が e4t になり，t の経
過とともに無限大に発散する．このあたりの議論はシステムの特性の一つである「安定性」に関わ
るところであるが，
別の機会に解説したい．

2.3.7 いくつかの例題
代表的な例題を解いてみよう．

右辺が定数の場合� �
y′(t) + 2y(t) = 3 , y(0) = 0 (2.57)

を解け．� �
解答は図 2.19を参照．
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図 2.19 微分方程式の解法

右辺が指数関数の場合� �
y′(t) + 3y(t) = 2e−5t , y(0) = 1 (2.58)

を解け．� �
解答は図 2.20を参照．

図 2.20 微分方程式の解法
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2.4 2 階の線形微分方程式
y(t), y′(t) とともに，2 階導関数の y′′(t) も含む（ 3 階以上はない）微分方程式は「 2 階の微分
方程式」と呼ばれる．電気回路や，ばねで構成される簡単な機械は，このタイプの微分方程式で表
わされる．

2.4.1 斉次方程式の一般解
例えば，つぎの問題について考えてみよう．右辺は 0 で，初期条件はない．� �

y′′(t) + 5y′(t) + 6y(t) = 0 (2.59)

の一般解を求めよ．� �
（解答）
特性方程式は

λ2 + 5λ+ 6 = 0 (2.60)

である．これは
(λ+ 2)(λ+ 3) = 0 (2.61)

なので，
λ = −2, −3 (2.62)

が特性方程式の解である．これを用いて (2.59)式の一般解は，

y(t) = C1e
−2t + C2e

−3t (2.63)

と表わされる．ただし，C1, C2 は任意の定数である．
（解答終）

解答の詳細を次節で解説する．

2.4.2 2階の場合の特性方程式
まず，(2.60)式の特性方程式について説明する．これは，(2.59)式の y′′(t), y′(t), y(t) をそれぞ
れ λ2, λ, 1 に置き換えたものである．これが出てきた理由をつぎに述べる．1 階の場合の類推か
ら，解をとりあえず指数関数 eλt と仮定する．λ は未定の定数である．指数関数を (2.59)式に代
入すると，

(eλt)′′ + 5(eλt)′ + 6eλt = 0 (2.64)

すなわち，
λ2eλt + 5λeλt + 6eλt = 0 (2.65)

が得られる．さらに両辺を eλt で割ると，

λ2 + 5λ+ 6 = 0 (2.66)

が出てくる．これが (2.60)式である．ここまでをまとめると，上式を満たす λ を用いた指数関数
eλt は微分方程式を満たす．
(2.60)式を満たす λ は，2次方程式の解として，

λ = −2, −3 (2.67)
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の 2 つである．したがって， e−2t と e−3t はどちらも (2.59)式を満たす．さらに C1, C2 を定数
として，C1e

−2t と C2e
−3t も (2.59) 式を満たすし，それらを足し合わせた C1e

−2t + C2e
−3t も

(2.59)式を満たす（実際に代入すれば確かめられる）．結局

y(t) = C1e
−2t + C2e

−3t (2.68)

として，C1, C2 を任意の定数としておけば，さまざまな解を表現できる．これが (2.59)式の一般
解である．
2 階の斉次微分方程式の一般解では，任意の定数の数は 2 つになる（1階の場合は任意定数は 1
つであった）．
2 次方程式が実数解ではなく，複素数解あるいは実数の重解をもつ場合については，第 2.4.4 節を参照．

2.4.3 斉次方程式の初期値問題
初期条件が指定されている場合は，それに応じて定数（指数関数の係数）の値を求めればよい．� �

y′′(t) + 5y′(t) + 6y(t) = 0, y(0) = 1, y′(0) = 1 (2.69)

を満たす y(t) を求めよ．� �
（解答）
特性方程式は

λ2 + 5λ+ 6 = 0 (2.70)

であり，この解は
λ = −2, −3 (2.71)

である．これを用いて一般解は，

y(t) = C1e
−2t + C2e

−3t (2.72)

と表わされる．ただし，C1, C2 は任意の定数である．この式を初期条件に適合させることを考え
る．y(0) = 1 より，t = 0 を (2.72)式に代入して，

C1 + C2 = 1 (2.73)

が得られる．また (2.72)式を微分して，

y′(t) = −2C1e
−2t − 3C2e

−3t (2.74)

であり，これに初期条件 y′(0) = 1 をあてはめると

−2C1 − 3C2 = 1 (2.75)

が得られる．(2.73)式と (2.75)式の連立方程式を解いて，

C1 = 4 , C2 = −3 (2.76)

が求められる．これらを (2.72)式に代入して，

y(t) = 4e−2t +−3e−3t (2.77)

が解となる．
（解答終）

2 階の微分方程式の初期値問題では，初期条件は y(0) = 1 と y′(0) = 1 のように 2 つの式で指
定される．
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2.4.4 実数解，重解，複素数解に応じた一般解の形
ふたたび斉次方程式の一般解に考察を戻そう．2 階の斉次方程式の特性方程式は，(2.60)式のよ
うに 2 次方程式になる．2 次方程式の解は，(2.62) 式のように実数になる場合もあるが，係数に
よっては，複素数になったり実数の重解になることもある．それらの各場合に応じて，2 階の斉次
微分方程式の一般解の形がつぎのように変わる．� �

2 階の斉次微分方程式
y′′(t) + py′(t) + qy(t) = 0 (2.78)

の一般解は，その特性方程式
λ2 + pλ+ q = 0 (2.79)

が，
(1) 2つの実数解 λ1, λ2 をもつ場合：

y(t) = C1e
λ1t + C2e

λ2t (2.80)

(2) 重解 λ をもつ場合：
y(t) = (C1 + C2t)e

λt (2.81)

(3) 複素数解 α± βj をもつ場合：

y(t) = eαt(C1 cosβt+ C2 sinβt) (2.82)

と表される．ただし，C1, C2 は任意の定数である．� �
実数解の場合に (2.80) 式の形式になることは，第 2.4.2 節で学んだ．重解および複素数解の場合に (2.81) 式，(2.82)

式になる理由は，参考文献（例えば「常微分方程式」，E. クライツィグ著 ; 北原和夫訳，培風館など）を参照されたい．重
解の場合には「定数変化法」を用いて，複素数解の場合には「オイラーの公式」を用いて「複素数を含む指数関数」を「実
数のみの指数関数と三角関数」に書き直すことで上記の式が現れる．
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2.4.5 例題� �
微分方程式

y′′(t) + 2y′(t) + 10y(t) = 0 (2.83)

の一般解を求めよ．� �
解答は図 2.21を参照．

図 2.21 微分方程式の解法� �
微分方程式

y′′(t) + 2y′(t) + y(t) = 0 (2.84)

の一般解を求めよ．� �
解答は図 2.22を参照．

図 2.22 微分方程式の解法

2.4.6 非斉次微分方程式の初期値問題
非斉次の（右辺が 0 でない）場合で，初期値が指定されている問題に対する解法は，第 2.3.4節
の方法と同じである．
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(1) 右辺を 0 に置き換えた斉次方程式の一般解 y0(t) を求める．
(2) 非斉次方程式の特殊解 yp(t) を求める．
(3) 非斉次方程式の一般解 y(t) = y0(t) + yp(t) を求める．
(4) 一般解 y(t) に初期条件をあてはめて，任意だった定数の具体的な値を求める．� �

(2)で特殊解を求めるときは，第 2.3.4節を参照するとよい．
例題を解いてみよう．� �

y′′(t) + 3y′(t) + 2y(t) = 6 , y(0) = 1, y′(0) = 1 (2.85)

を満たす y(t) を求めよ．� �
解答は図 2.23を参照．

図 2.23 微分方程式の解法
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y′′(t) + 2y′(t) + 10y(t) = 30e−2t , y(0) = 2, y′(0) = 1 (2.86)

を満たす y(t) を求めよ．� �
解答は図 2.24を参照．

図 2.24 微分方程式の解法� �
y′′(t) + 2y′(t) + y(t) = sin t , y(0) = 0, y′(0) = 1

を満たす y(t) を求めよ．� �
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2.5 微分方程式に関する基礎用語
2.5.1 線形と非線形
1 階の微分方程式のうち，

y′(t) + p(t)y(t) = r(t) (2.87)

という形に書けるものを線形微分方程式という．この形以外のものは非線形となる．
例えば，

y′(t) + y(t) = t2 (2.88)

は線形な微分方程式である．一方，

y′(t) + y(t) = y2(t) (2.89)

は非線形な微分方程式である．(2.88)式のように，t2 が含まれていても線形であるが，(2.89)式の
ように，y2(t) が含まれると非線形になる．
例えば，

y′(t) + y(t) = sin t (2.90)

は線形な微分方程式である．一方，

y′(t) + sin y(t) = 0 (2.91)
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は非線形な微分方程式である．(2.90)式のように，sin t が含まれていても線形であるが，(2.91)式
のように，sin y(t) が含まれると非線形になる．

y(t)y′(t) + y(t) = sin t (2.92)

のように y′(t) と y(t) の積が入っているものも非線形である．
2 階の場合は，

y′′(t) + p(t)y′(t) + q(t)y(t) = r(t) (2.93)

という形に書けるものが線形，それ以外が非線形となる．

2.5.2 定数係数と変数係数
(2.93)式にしたがえば，

y′′(t) + 3y′(t) + 2y(t) = e−4t (2.94)

も
y′′(t) + 3 sin ty′(t) + t2y(t) = e−4t (2.95)

も線形な微分方程式である．(2.93)式における p(t) と q(t)はそれぞれ y′(t), y(t) にかかる係数で
ある．これらの係数が，(2.94)式のように定数の場合，定数係数の線形微分方程式，(2.93)式のよ
うに t に関する関数になっている場合，変数係数の線形微分方程式という．

2.5.3 斉次と非斉次
線形微分方程式

y′(t) + p(t)y(t) = r(t) (2.96)

や
y′′(t) + p(t)y′(t) + q(t)y(t) = r(t) (2.97)

において，r(t) = 0 の場合を斉次方程式という．そうでない場合を非斉次方程式という．
ここでいう「r(t) = 0」とは「すべての t に対して r(t) が 0 」という意味である．このことを「r(t) は恒等的に 0」と

言ったり，「r(t) ≡ 0」と書き表わしたりする
斉次方程式のことを「同次方程式」，非斉次方程式を「非同次方程式」ともいう．

2.5.4 一般解と特殊解
例えば，先の例題で見たように，

y′′(t) + 5y′(t) + 6y(t) = 0 (2.98)

の一般解は，
y(t) = C1e

−2t + C2e
−3t (2.99)

と表わされる．このように一般解は任意の定数を含む形で表わされる．「一般」という名前がつい
ている理由は，(2.98) 式の解のすべてが (2.99) 式で表現されているからである．(2.99) 式の任意
の定数 C1 と C2 にいろいろな値を代入することによって y(t) はさまざなま関数になる．それら
すべては (2.98)式を満たすし，逆に (2.98)式を満たす y(t) はすべて (2.99)式の形で表わされる．
特殊解とは，一般解の任意定数にある特殊な値を代入して得られる解である．どんな値を代入し

たかによって特殊解の式も変わる．
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2.6 入力が正弦波の場合
2.6.1 d1 cosωt+ d2 sinωt の変形
まず，三角関数の公式を確認しよう．� �

d1 cos(ωt+B) + d2 sin(ωt+B) = A sin(ωt+B + γ) (2.100)

という変形が可能である．ただし，

A =
√
d21 + d22 (2.101)

であり，γ は
sin γ =

d1√
d21 + d22

, cos γ =
d2√

d21 + d22
(2.102)

を満たす角度である．� �
また，上で B = 0 とした場合にはつぎのようになる．� �

d1 cosωt+ d2 sinωt = A sin(ωt+ γ) (2.103)

という変形が可能である．ただし，

A =
√
d21 + d22 (2.104)

であり，γ は
sin γ =

d1√
d21 + d22

, cos γ =
d2√

d21 + d22
(2.105)

を満たす角度である．� �

図 2.25 係数と振幅・位相の関係

2.6.2 正弦波入力に対する定常出力
つぎの例題を解いてみよう．解答の後半で，前節で述べた変形が有効となる．
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y′(t) + 2y(t) = 4 sin 2t , y(0) = 4 (2.106)

を満たす y(t) を求めよ．また，t → ∞ における y(t) を A sin(ωt+ γ) の形式で表わせ．� �
この例題をシステムの入力と出力の観点から書きなおすとつぎのようになる．� �
入力 u(t)，出力 y(t) の関係が

y′(t) + 2y(t) = u(t) (2.107)

で表わされ，y(t) の初期値が y(0) = 4 のシステムがある．入力信号 u(t) = 4 sin 2t を加えた
場合，定常状態における出力 y(t) を A sin(ωt + γ) の形式で表わし，出力の振幅と位相を求
めよ．� �

（解答）
特性方程式は λ+ 2 = 0 なので，λ = −2 を用いて

y0(t) = Ce−2t（C は定数） (2.108)

が斉次方程式の一般解となる．非斉次方程式の特殊解を
yp(t) = d1 cos 2t+ d2 sin 2t (2.109)

とする．(2.106)式に代入し，微分を実行して整理すると，
(2d1 + 2d2) cos 2t+ (−2d1 + 2d2) sin 2t = 4 sin 2t

となり，2d1 + 2d2 = 0 と −2d1 + 2d2 = 4 が得られる．この 2 式より，d1 = −1, d2 = 1 が求められ，特殊解は，
yp(t) = − cos 2t+ sin 2t (2.110)

となる．非斉次方程式の一般解は (2.108)式と (2.110)式より
y(t) = Ce−2t − cos 2t+ sin 2t (2.111)

である．初期条件 y(0) = 4 より，C = 5 が定まり，
y(t) = 5e−2t − cos 2t+ sin 2t (2.112)

が (2.106)式を満たす解である（ここまでは勉強済みで，つぎから新たな手法がはじまる）．ここで (2.103)式を用いると，√
(−1)2 + 12 =

√
2 より，

y(t) = 5e−2t +
√
2 sin(2t+ γ) (2.113)

と表わされる．ただし，γ は

sin γ =
−1√

(−1)2 + 12
= −

1√
2

(2.114)

cos γ =
1√

(−1)2 + 12
=

1√
2

(2.115)

を満たす角度であり，
γ = −

π

4
(2.116)

と求められる．(2.113)式より解は
y(t) = 5e−2t +

√
2 sin

(
2t−

π

4

)
(2.117)

となる．t → ∞ では e−5t はほぼ 0 に収束している．したがって，t → ∞ においては

y(t) ≃
√
2 sin

(
2t−

π

4

)
(2.118)

となる．
（解答終）

問題と解答をシステムの観点から図にまとめると図 2.26のようになる．入力は 4 sin 2t であり，
角周波数が 2 の正弦波で，振幅が 4，位相は 0 である．定常状態での出力は (2.118)であり，入力
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と同様に角周波数 2 の正弦波になる．ただし，出力の振幅 A は
√
2，位相 γ が −π

4 となり，入力
とは異なる．

図 2.26 正弦波入力に対するシステムの出力

一般には図 2.27のように表わされる．線形定数係数の微分方程式で表わされるシステムに正弦
波を入力として与えると，出力も同じ角周波数の正弦波になる．ただし，振幅，位相は入力と出力
で異なる値になる．

図 2.27 正弦波入力に対するシステムの出力

2.6.3 特殊解の求める別の方法
微分方程式の右辺が cos や sin を用いて表わされる場合，特殊解を (2.50)式，すなわち

yp(t) = d1 cosωt+ d2 sinωt（d1, d2 は未定係数）
と仮定することはすでに学んだが，つぎのように仮定して yp(t) を求めることもできる．� �

u(t) = k cosωt あるいは u(t) = k sinωtの場合，特殊解を

yp(t) = D1 sin(ωt+D2)（D1, D2 は未定係数） (2.119)

と仮定する．� �
どちらの方法を用いても解は同じになる（一方の解を変形すると他方の解が得られる）．

2.7 システムの安定性
2.7.1 システムの安定性
例えば，

y(t) = 5e−2t +
√
2 sin

(
2t− π

4

)
(2.120)
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は t → ∞ において
y(t) ≃

√
2 sin

(
2t− π

4

)
(2.121)

となる．これは図 2.18と同様な現象であり，第 1 項の 5e−2t が t → ∞ において 0 に収束するこ
とによる．なお，e−at が 0 に収束するのは −a < 0 のとき，すなわち a > 0 のときである．
ここで信号の時間的変化について考えよう．時間の経過とともに信号の絶対値がどんどん大きく
なり，無限大になることを「発散する」という（図 2.28）．

図 2.28 信号の発散

システムに有限な値の入力 u(t) を加えるとする（大きさが有限であればよく，振動していても
よい）．それに対して出力 y(t) が発散しないとき，「システムは安定である」という．逆に不安定
なシステムでは出力が発散する（図 2.29）．

図 2.29 安定なシステムと不安定なシステム

ここではシステムを表す微分方程式がどういう条件を満たせば安定なのかを考察してみよう．
例えば (2.112)式の解

y(t) = 5e−2t − cos 2t+ sin 2t

を見て発散の有無を考えてみる．ここには指数関数と三角関数が含まれている．三角関数は値が
増えたり減ったりするだけで無限大になることはない．無限大になる可能性を持つのは指数関数
のほうである．しかし (2.112) 式の場合は，指数関数が e−2t であり，これは t → ∞ において
e−2t → 0 となり（図 2.17参照）発散はしない．ここで重要な値は t に掛かっている係数 −2 であ
り，この値が負であるがゆえに発散しないことになっている．もし −2 ではなく +2 だとしたら，e2t の値
は t の増加とともに無限大になり発散することになる．

図 2.30 特性方程式と指数関数

では，発散の有無に関わる e−2t や −2 がどこに由来しているのか遡って見てみよう．e−2t が最
初に現れたのは解法の (1)の段階，すなわち斉次方程式の一般解の (2.108)式である．そして −2
という値は特性方程式の解 λ の値であり，これが負であることが安定条件となっている．
このことから一般につぎのことが言える．
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u(t) は大きさが有限な入力信号とする．線形 1 階定数係数微分方程式

y′(t) + ay(t) = u(t) (2.122)

で表されるシステムが安定である（y(t) が発散しない）ための条件は，特性方程式

λ+ a = 0 (2.123)

の解 λ(= −a) の値が負になっていることである．� �
2階の場合にはどうだろうか．先と同様に斉次方程式の一般解 (2.80)式 ∼ (2.82)式と，それに
関連する特性方程式から，つぎのことが言える（まず (2.80)式 ∼ (2.82)式の指数関数の部分に注
目してから下記を読んで欲しい）� �

u(t) は大きさが有限な入力信号とする．線形 2 階定数係数微分方程式

y′′(t) + py′(t) + qy(t) = u(t) (2.124)

で表されるシステムが安定である（y(t) が発散しない）ための条件は，特性方程式

λ2 + pλ+ q = 0 (2.125)

が，
(1) 2つの実数解 λ1, λ2 をもつ場合：

λ1 < 0 , λ2 < 0 (2.126)

(2) 重解 λ をもつ場合：
λ < 0 (2.127)

(3) 複素数解 α± βj をもつ場合：
α < 0 (2.128)

となることである．� �
上記の λ1, λ2, λ, α は (2.80)式 ∼ (2.82)式に含まれている指数関数の t に掛かっている係数で
ある．それらの値が負であれば指数関数は時間の経過とともに 0 に収束し，出力は発散しない．
まとめると，つぎのようになる．� �
線形定数係数微分方程式で表されるシステムが安定となる条件は，特性方程式の解が負（複素
数の場合は実部が負）であることである．� �

2.7.2 線形定数係数微分方程式の解
図 2.31は微分方程式とその解の構造をまとめている．解の構造を調べていくと，特性方程式に
対応した指数関数と，入力に対応した関数が存在することに注意しよう．それら 2 つの成分のう
ち，特性方程式に対応する指数関数の項はシステムが安定な場合に 0 に収束するので，t → ∞ と
いう定常状態においては，入力に対応した関数が解の主な成分となる．
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図 2.31 線形定数係数微分方程式の解の特徴
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